In this paper, we consider function-indexed normalized weighted integrated periodograms for equidistantly sampled multivariate continuous-time state space models which are multivariate continuous-time ARMA processes. Thereby, the sampling distance is fixed and the driving L\'evy process has at least a finite fourth moment. Under different assumptions on the function space and the moments of the driving L\'evy process we derive a central limit theorem for the function-indexed normalized weighted integrated periodogram. Either the assumption on the function space or the assumption on the existence of moments of the L\'evy process is weaker. Furthermore, we show the weak convergence in both the space of continuous functions and in the dual space to a Gaussian process and give an explicit representation of the covariance function. The results can be used to derive the asymptotic behavior of the Whittle estimator and to construct goodness-of-fit test statistics as the Grenander-Rosenblatt statistic and the Cram\'er-von Mises statistic. We present the exact limit distributions of both statistics and show their performance through a simulation study.
翻译:在本文中, 我们考虑的是功能指数化的多变连续状态空间模型, 这些模型是多变的连续时间ARMA进程。 因此, 取样距离是固定的, 驱动 L\' evy 进程至少有一个有限的第四刻。 在对函数空间和驱动 L\' evy 进程时间的不同假设下, 我们为函数指数化的正常加权周期图得出了一个中心限值。 要么是对函数空间的假设, 要么是对L\' evy 进程时空的假设, 比较弱。 此外, 我们向Gausian 进程展示了连续功能空间和双空空间中薄弱的趋同性, 并给出了共变功能的清晰表示。 其结果可以用来得出 Whittle 估计器的无干扰行为, 并用 Grenander- Rosenblatt 统计 和 Cram\ er- von Mises 统计来构建良好测试统计数据。 我们展示了两个统计数据的精确的极限分布, 并通过模拟研究来显示其性表现 。