For the purpose of finding benchmark quality solutions to time dependent Sn transport problems, we develop a numerical method in a Discontinuous Galerkin (DG) framework that utilizes time dependent cell edges, which we call a moving mesh, and an uncollided source treatment. The DG method for discretizing space is a powerful solution technique on smooth problems and is robust on non-smooth problems. In order to realize the potential of the DG method to spectrally resolve smooth problems, our moving mesh and uncollided source treatment is devised to circumvent discontinuities in the solution or the first derivative of the solutions that are admitted in transport calculations. The resulting method achieves spectral convergence on smooth problems, like a standard DG implementation. When applied to problems with nonsmooth sources that induce discontinuities, our moving mesh, uncollided source method returns a significantly more accurate solution than the standard DG method. On problems with smooth sources, we observe spectral convergence even in problems with wave fronts. In problems where the angular flux is inherently non-smooth, as in Ganapol's (2001) well known plane pulse benchmark, we do not observe an elevated order of accuracy when compared with static meshes, but there is a reduction in error that is nearly three orders of magnitude.
翻译:为了找到时间依赖的 Sn 运输问题的基准质量解决方案,我们在一个不连续的 Galerkin (DG) 框架中开发了一个数字方法,这个方法使用时间依赖的细胞边缘的不连续的不连续的 Galerkin (DG) 框架,我们称之为移动网格和不协调源处理。 离散空间的DG 方法是解决平滑问题的有力方法,并且对非移动问题非常有力。 为了实现DG 方法在光谱解决平滑问题方面的潜力,我们移动网格和不协调源处理的设计是为了避免解决方案的不连续或运输计算中承认的解决方案的第一个衍生物的产生物。 由此形成的方法在光滑的问题上实现了光谱趋同, 就像标准DGD 执行。 当应用于引起不连续问题的非移动源的问题时,我们的移动网格、不相联源法的方法比标准DG方法更准确得多。 关于光源的问题,我们观察到光谱的趋同,甚至在波前沿的问题。 在问题中,我们所观察到的矩通的通是非摩的,在Ganapol 3 的精确度中,而我们所认识的平流的精确度是接近我的平位基准。