This work addresses the challenge of capturing the complexities of legal knowledge by proposing a multi-layered embedding-based retrieval method for legal and legislative texts. Creating embeddings not only for individual articles but also for their components (paragraphs, clauses) and structural groupings (books, titles, chapters, etc), we seek to capture the subtleties of legal information through the use of dense vectors of embeddings, representing it at varying levels of granularity. Our method meets various information needs by allowing the Retrieval Augmented Generation system to provide accurate responses, whether for specific segments or entire sections, tailored to the user's query. We explore the concepts of aboutness, semantic chunking, and inherent hierarchy within legal texts, arguing that this method enhances the legal information retrieval. Despite the focus being on Brazil's legislative methods and the Brazilian Constitution, which follow a civil law tradition, our findings should in principle be applicable across different legal systems, including those adhering to common law traditions. Furthermore, the principles of the proposed method extend beyond the legal domain, offering valuable insights for organizing and retrieving information in any field characterized by information encoded in hierarchical text.
翻译:暂无翻译