Brain lesion segmentation provides a valuable tool for clinical diagnosis, and convolutional neural networks (CNNs) have achieved unprecedented success in the task. Data augmentation is a widely used strategy that improves the training of CNNs, and the design of the augmentation method for brain lesion segmentation is still an open problem. In this work, we propose a simple data augmentation approach, dubbed as CarveMix, for CNN-based brain lesion segmentation. Like other "mix"-based methods, such as Mixup and CutMix, CarveMix stochastically combines two existing labeled images to generate new labeled samples. Yet, unlike these augmentation strategies based on image combination, CarveMix is lesion-aware, where the combination is performed with an attention on the lesions and a proper annotation is created for the generated image. Specifically, from one labeled image we carve a region of interest (ROI) according to the lesion location and geometry, and the size of the ROI is sampled from a probability distribution. The carved ROI then replaces the corresponding voxels in a second labeled image, and the annotation of the second image is replaced accordingly as well. In this way, we generate new labeled images for network training and the lesion information is preserved. To evaluate the proposed method, experiments were performed on two brain lesion datasets. The results show that our method improves the segmentation accuracy compared with other simple data augmentation approaches.


翻译:在这项工作中,我们提出了一个简单的数据增强方法,称为CarveMix, 用于以CNN为基础的脑损伤分割。像其他基于“混合”的方法,如Mixup 和 CutMix, CarveMix 将现有的两种标定图像合并成新的标签样本。然而,与这些基于图像组合的增强战略不同,CarveMix 是一个腐蚀感知度值的组合组合方法,在对生成的图像进行关注和适当注解的情况下,对生成的图像进行组合。具体地说,从一个标定的图像中,我们根据腐蚀位置和地理测量将一个感兴趣的区域(ROI)刻出一个区域,而ROI 的大小则从概率分布中取样。第二个刻刻成的ROI 比较方法取代了基于图像组合的新的标定精度方法,然后将相应的图解度方法替换为新的图解值。我们做了相应的图解图解,第二个图解的图解方法被替换了我们的图解。

0
下载
关闭预览

相关内容

【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
VIP会员
相关VIP内容
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Top
微信扫码咨询专知VIP会员