Neural Architecture Search (NAS) has shown great potentials in automatically designing neural network architectures for real-time semantic segmentation. Unlike previous works that utilize a simplified search space with cell-sharing way, we introduce a new search space where a lightweight model can be more effectively searched by replacing the cell-sharing manner with cell-independent one. Based on this, the communication of local to global information is achieved through two well-designed modules. For local information exchange, a graph convolutional network (GCN) guided module is seamlessly integrated as a communication deliver between cells. For global information aggregation, we propose a novel dense-connected fusion module (cell) which aggregates long-range multi-level features in the network automatically. In addition, a latency-oriented constraint is endowed into the search process to balance the accuracy and latency. We name the proposed framework as Local-to-Global Information Communication Network Search (LGCNet). Extensive experiments on Cityscapes and CamVid datasets demonstrate that LGCNet achieves the new state-of-the-art trade-off between accuracy and speed. In particular, on Cityscapes dataset, LGCNet achieves the new best performance of 74.0\% mIoU with the speed of 115.2 FPS on Titan Xp.
翻译:神经结构搜索(NAS)在自动设计用于实时语义分化的神经网络结构结构方面显示出巨大的潜力。与以前使用简化搜索空间以共享单元格的方式使用简化搜索空间的工程不同,我们引入了一个新的搜索空间,通过以独立单元格的方式取代共享模式,可以更有效地搜索一个轻量模型。在此基础上,通过两个设计完善的模块将本地信息与全球信息进行沟通。对于地方信息交流,一个图形相向网络(GCN)导导模块作为细胞之间的通信提供,被无缝地整合成一个无缝的集成模块。对于全球信息汇总,我们提出了一个新的密集连接聚合模块(细胞),该模块将网络的远程多级别特征自动聚合在一起。此外,在搜索过程中还设定了一种以宽度为导向的限制,以平衡准确性和延缓度。我们将拟议框架命名为“本地对地全球信息通信网络搜索 ” 。关于城市景象和Camvid数据集的广泛实验表明,LGCNet实现了新状态的精确和速度之间的交易。具体地说,在城市数据上实现了“坦马氏2”MCS。