Weakly-supervised semantic segmentation aims to reduce labeling costs by training semantic segmentation models using weak supervision, such as image-level class labels. However, most approaches struggle to produce accurate localization maps and suffer from false predictions in class-related backgrounds (i.e., biased objects), such as detecting a railroad with the train class. Recent methods that remove biased objects require additional supervision for manually identifying biased objects for each problematic class and collecting their datasets by reviewing predictions, limiting their applicability to the real-world dataset with multiple labels and complex relationships for biasing. Following the first observation that biased features can be separated and eliminated by matching biased objects with backgrounds in the same dataset, we propose a fully-automatic/model-agnostic biased removal framework called MARS (Model-Agnostic biased object Removal without additional Supervision), which utilizes semantically consistent features of an unsupervised technique to eliminate biased objects in pseudo labels. Surprisingly, we show that MARS achieves new state-of-the-art results on two popular benchmarks, PASCAL VOC 2012 (val: 77.7%, test: 77.2%) and MS COCO 2014 (val: 49.4%), by consistently improving the performance of various WSSS models by at least 30% without additional supervision.


翻译:弱监督语义分割旨在通过使用弱监督方式,如图像级类别标签,来训练语义分割模型以降低标注成本。然而,大多数方法难以产生准确的定位图,并在与类别相关的背景(如以火车类别检测铁路)中遭受错误预测的偏置物体方面受苦。最近一些去除偏置物体的方法需要附加监督,即对每个有问题的类别手动识别偏置物体并通过查看预测数据集来收集它们的数据,从而限制其适用性于具有多个标签和复杂关系的真实数据集。基于第一项观察,即通过将偏置物体与相同数据集中的背景进行匹配,可以分离并消除偏置特征,我们提出了完全自动/模型不可知的偏置物体去除框架MARS(无需额外的监督),它利用无监督技术的语义一致特征来消除伪标签中的偏置物体。令人惊讶的是,我们展示了MARS在两个流行数据集PASCAL VOC 2012(val: 77.7%,test: 77.2%)和MS COCO 2014(val: 49.4%)上实现了新的最高成果,通过对各种WSSS模型的性能进行一致的提高达到了至少30%,而无需附加的监督。

0
下载
关闭预览

相关内容

【CVPR2022】弱监督语义分割的类重新激活图
专知会员服务
16+阅读 · 2022年3月7日
【CVPR2022】弱监督目标定位建模为领域适应
专知会员服务
14+阅读 · 2022年3月4日
专知会员服务
42+阅读 · 2021年8月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【泡泡一分钟】用于深度双目的非监督适应方法(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关VIP内容
【CVPR2022】弱监督语义分割的类重新激活图
专知会员服务
16+阅读 · 2022年3月7日
【CVPR2022】弱监督目标定位建模为领域适应
专知会员服务
14+阅读 · 2022年3月4日
专知会员服务
42+阅读 · 2021年8月20日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员