A methodological framework for ensemble-based estimation and simulation of high dimensional dynamical systems such as the oceanic or atmospheric flows is proposed. To that end, the dynamical system is embedded in a family of reproducing kernel Hilbert spaces with kernel functions driven by the dynamics. This family is nicknamed Wonderland for its appealing properties. In Wonderland the Koopman and Perron-Frobenius operators are unitary and uniformly continuous. This property warrants they can be expressed in exponential series of diagonalizable bounded infinitesimal generators. Access to Lyapunov exponents and to exact ensemble based expressions of the tangent linear dynamics are directly available as well. Wonderland enables us the devise of strikingly simple ensemble data assimilation methods for trajectory reconstructions in terms of constant-in-time linear combinations of trajectory samples. Such an embarrassingly simple strategy is made possible through a fully justified superposition principle ensuing from several fundamental theorems.
翻译:提议了一个基于全方位估计和模拟诸如海洋或大气流动等高维动态系统的方法框架。 为此, 动态系统嵌入了一个由动态驱动的复制内核Hilbert空间、内核功能的家庭。 这个家庭因其吸引力特性而命名为奇特地带。 在奇特兰, Koopman 和 Perron- Frobenius 操作者是单一的、 统一的连续的。 这些特性可以以可分解的、 分解的无限微量生成器的指数序列表示。 使用Lyapunov 显出和精确的相近线性共振动表达器也可以直接得到。 奇特兰使我们能够设计出非常简单的共性数据同化方法, 用于轨迹样的恒定线性组合的轨迹重建。 这种令人尴尬的简单战略是通过几个基本理论的完全合理的超集原则得以实现的。