In this paper we investigate the performance of a variety of estimation techniques for the scale and shape parameter of the Lomax distribution. These methods include traditional methods such as the maximum likelihood estimator and the method of moments estimator. A version of the maximum likelihood estimator adjusted for bias is also included. Furthermore, alternative moment-based estimation techniques such as the $L$-moment estimator and the probability weighted moments estimator are included along with three different minimum distance estimators. The finite sample performances of each of these estimators is compared via an extensive Monte Carlo study. We find that no single estimator outperforms its competitors uniformly. We recommend one of the minimum distance estimators for use with smaller samples, while a bias reduced version of maximum likelihood estimation is recommended for use with larger samples. In addition, the desirable asymptotic properties of traditional maximum likelihood estimators make them appealing for larger samples. We also include a practical application demonstrating the use of the techniques on observed data.
翻译:在本文中,我们调查了罗迈斯分布的尺度和形状参数的各种估计技术的性能,这些方法包括传统方法,如最大概率估测器和时间估测器的方法。还包含根据偏差调整的最大概率估测器的版本。此外,还包含基于时间的替代估算技术,如美元移动估计器和概率加权时间估计器,以及三个不同的最低距离估计器。通过广泛的蒙特卡洛研究,比较了这些估计器的有限样本性能。我们发现没有一个单一估测器能以一致的方式超越其竞争对手。我们建议使用一个最小距离的估测器,用较小的样品,而建议使用一个减少最大概率估计的偏差版本,供较大的样品使用。此外,传统最大可能性估测器的可取性随机特性使他们对较大的样品有吸引力。我们还包括一个实际应用,以展示观测到的数据技术的使用情况。