Text-to-Image generation models have revolutionized the artwork design process and enabled anyone to create high-quality images by entering text descriptions called prompts. Creating a high-quality prompt that consists of a subject and several modifiers can be time-consuming and costly. In consequence, a trend of trading high-quality prompts on specialized marketplaces has emerged. In this paper, we propose a novel attack, namely prompt stealing attack, which aims to steal prompts from generated images by text-to-image generation models. Successful prompt stealing attacks direct violate the intellectual property and privacy of prompt engineers and also jeopardize the business model of prompt trading marketplaces. We first perform a large-scale analysis on a dataset collected by ourselves and show that a successful prompt stealing attack should consider a prompt's subject as well as its modifiers. We then propose the first learning-based prompt stealing attack, PromptStealer, and demonstrate its superiority over two baseline methods quantitatively and qualitatively. We also make some initial attempts to defend PromptStealer. In general, our study uncovers a new attack surface in the ecosystem created by the popular text-to-image generation models. We hope our results can help to mitigate the threat. To facilitate research in this field, we will share our dataset and code with the community.
翻译:文本到图像的生成模型革命了艺术设计过程,使任何人都能够通过输入被称为“迅速”的文本描述创建高质量的图像。 创建由一个主题和几个修改者组成的高质量快速的高质量数据可以耗费时间和成本。 因此,出现了在专门市场上交易高质量高质量快速数据的趋势。 在本文中,我们提议了一个新的攻击,即迅速偷窃袭击,目的是从文本到图像生成模型生成的图像中窃取提示信息。 成功的迅速盗窃袭击直接侵犯了迅速工程师的知识产权和隐私,也危及迅速交易市场的商业模式。 我们首先对自己收集的数据集进行大规模分析,并表明成功的快速盗窃袭击应该既考虑提示主题,也考虑其修改者。 我们然后提议以学习为基础进行第一次快速盗窃袭击, 即快速偷窃者, 并展示其在定量和定性两个基线方法上的优越性。 我们还做了一些初步尝试来保护迅速的工程师。 总的来说,我们的研究揭示了由流行文本到模拟模型所创造的生态系统中的新的攻击面。 我们希望我们能够帮助减轻这一威胁, 分享我们的数据。