We consider a multi-hop distributed hypothesis testing problem with multiple decision centers (DCs) for testing against independence and where the observations obey some Markov chain. For this system, we characterize the fundamental type-II error exponents region, i.e., the type-II error exponents that the various DCs can achieve simultaneously, under expected rate-constraints. Our results show that this fundamental exponents region is boosted compared to the region under maximum-rate constraints, and that it depends on the permissible type-I error probabilities. When all DCs have equal permissible type-I error probabilities, the exponents region is rectangular and all DCs can simultaneously achieve their optimal type-II error exponents. When the DCs have different permissible type-I error probabilities, a tradeoff between the type-II error exponents at the different DCs arises. New achievability and converse proofs are presented. For the achievability, a new multiplexing and rate-sharing strategy is proposed. The converse proof is based on applying different change of measure arguments in parallel and on proving asymptotic Markov chains. For the special cases $K = 2$ and $K = 3$, we provide simplified expressions for the exponents region; a similar simplification is conjectured for arbitrary $K\geq 2$.


翻译:我们考虑到多个决策中心(DCs)对独立进行测试的多点分布式假设测试问题,而观测结果符合某些 Markov 链。对于这个系统,我们给出了二类差错推出区域的基本类型二型差错推出区域,即各发展中国家根据预期利率限制可以同时实现的二类差错推出区域。我们的结果表明,与区域相比,这个二类差推出区域在最高利率限制下得到了推动,并取决于允许的一类差错概率。当所有发展中国家都具有相同的允许一类差错概率时,我们给出了二类差错推出区域,所有发展中国家都可以同时达到最佳的二类差推出区域,即:在预期利率限制下,各发展中国家可以同时实现的二类差推出。当不同发展中国家具有不同的可允许一型差错推出区域之间出现一个折算。提出了新的稳妥性和反的证明。对于可实现性、新的多重交错和率分享战略,所有发展中国家都具有矩形区域,所有发展中国家都可以同时实现最佳的二类差错推出。 当我们用2K 的简化了标准时,我们用了2 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
0+阅读 · 2022年10月12日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
Top
微信扫码咨询专知VIP会员