We consider a multi-hop distributed hypothesis testing problem with multiple decision centers (DCs) for testing against independence and where the observations obey some Markov chain. For this system, we characterize the fundamental type-II error exponents region, i.e., the type-II error exponents that the various DCs can achieve simultaneously, under expected rate-constraints. Our results show that this fundamental exponents region is boosted compared to the region under maximum-rate constraints, and that it depends on the permissible type-I error probabilities. When all DCs have equal permissible type-I error probabilities, the exponents region is rectangular and all DCs can simultaneously achieve their optimal type-II error exponents. When the DCs have different permissible type-I error probabilities, a tradeoff between the type-II error exponents at the different DCs arises. New achievability and converse proofs are presented. For the achievability, a new multiplexing and rate-sharing strategy is proposed. The converse proof is based on applying different change of measure arguments in parallel and on proving asymptotic Markov chains. For the special cases $K = 2$ and $K = 3$, we provide simplified expressions for the exponents region; a similar simplification is conjectured for arbitrary $K\geq 2$.
翻译:我们考虑到多个决策中心(DCs)对独立进行测试的多点分布式假设测试问题,而观测结果符合某些 Markov 链。对于这个系统,我们给出了二类差错推出区域的基本类型二型差错推出区域,即各发展中国家根据预期利率限制可以同时实现的二类差错推出区域。我们的结果表明,与区域相比,这个二类差推出区域在最高利率限制下得到了推动,并取决于允许的一类差错概率。当所有发展中国家都具有相同的允许一类差错概率时,我们给出了二类差错推出区域,所有发展中国家都可以同时达到最佳的二类差推出区域,即:在预期利率限制下,各发展中国家可以同时实现的二类差推出。当不同发展中国家具有不同的可允许一型差错推出区域之间出现一个折算。提出了新的稳妥性和反的证明。对于可实现性、新的多重交错和率分享战略,所有发展中国家都具有矩形区域,所有发展中国家都可以同时实现最佳的二类差错推出。 当我们用2K 的简化了标准时,我们用了2 。