Style Transfer with Inference-Time Optimisation (ST-ITO) is a recent approach for transferring the applied effects of a reference audio to an audio track. It optimises the effect parameters to minimise the distance between the style embeddings of the processed audio and the reference. However, this method treats all possible configurations equally and relies solely on the embedding space, which can result in unrealistic configurations or biased outcomes. We address this pitfall by introducing a Gaussian prior derived from the DiffVox vocal preset dataset over the parameter space. The resulting optimisation is equivalent to maximum-a-posteriori estimation. Evaluations on vocal effects transfer on the MedleyDB dataset show significant improvements across metrics compared to baselines, including a blind audio effects estimator, nearest-neighbour approaches, and uncalibrated ST-ITO. The proposed calibration reduces the parameter mean squared error by up to 33% and more closely matches the reference style. Subjective evaluations with 16 participants confirm the superiority of our method in limited data regimes. This work demonstrates how incorporating prior knowledge at inference time enhances audio effects transfer, paving the way for more effective and realistic audio processing systems.
翻译:暂无翻译