A coreset for a set of points is a small subset of weighted points that approximately preserves important properties of the original set. Specifically, if $P$ is a set of points, $Q$ is a set of queries, and $f:P\times Q\to\mathbb{R}$ is a cost function, then a set $S\subseteq P$ with weights $w:P\to[0,\infty)$ is an $\epsilon$-coreset for some parameter $\epsilon>0$ if $\sum_{s\in S}w(s)f(s,q)$ is a $(1+\epsilon)$ multiplicative approximation to $\sum_{p\in P}f(p,q)$ for all $q\in Q$. Coresets are used to solve fundamental problems in machine learning under various big data models of computation. Many of the suggested coresets in the recent decade used, or could have used a general framework for constructing coresets whose size depends quadratically on what is known as total sensitivity $t$. In this paper we improve this bound from $O(t^2)$ to $O(t\log t)$. Thus our results imply more space efficient solutions to a number of problems, including projective clustering, $k$-line clustering, and subspace approximation. Moreover, we generalize the notion of sensitivity sampling for sup-sampling that supports non-multiplicative approximations, negative cost functions and more. The main technical result is a generic reduction to the sample complexity of learning a class of functions with bounded VC dimension. We show that obtaining an $(\nu,\alpha)$-sample for this class of functions with appropriate parameters $\nu$ and $\alpha$ suffices to achieve space efficient $\epsilon$-coresets. Our result implies more efficient coreset constructions for a number of interesting problems in machine learning; we show applications to $k$-median/$k$-means, $k$-line clustering, $j$-subspace approximation, and the integer $(j,k)$-projective clustering problem.
翻译:一组点的核心值是一组小的加权点数, 它大约保存了原始集的重要精度。 具体地说, 如果美元P$是一组点, 美元Q美元是一组问询, 美元P\time $to\ mathb{R} 是一个成本函数, 那么一套重的S\subseqeq P$ $: ww: p\to[0,\infty] 是用于某些参数 $epsilon>0美元( eepsilon>$, 如果美元Sw (s) 美元, 美元(s) 美元(s) 美元, 美元(Q) 美元(Q) 美元(Q) 。 核心值用来解决机器在各种大数据计算模型下学习的基本问题。 使用了很多建议的核心值, 或者可能使用一个用于构建核心值的常规框架, 其大小取决于 美元(s) 美元(s) compeciental) compeal- compeal compeal deal commaisal commaisal motional motional motional motional motional motional motions, motions a presmotional motions, motional motional motions a motional motional motions, motional motional motions a motional motional motional motional motional motional motional motional motions a motional mouds a motional motional motional motions a mouds, motional motional motional motional mouds a mouds a mouds a mouds motions a motions a motional motional motions a mouds a motions a mouds, motions, mouds a mouds a motions a mouds a mouds, mouds, motions mous mo