We study the sparse phase retrieval problem, recovering an $s$-sparse length-$n$ signal from $m$ magnitude-only measurements. Two-stage non-convex approaches have drawn much attention in recent studies for this problem. Despite non-convexity, many two-stage algorithms provably converge to the underlying solution linearly when appropriately initialized. However, in terms of sample complexity, the bottleneck of those algorithms often comes from the initialization stage. Although the refinement stage usually needs only $m=\Omega(s\log n)$ measurements, the widely used spectral initialization in the initialization stage requires $m=\Omega(s^2\log n)$ measurements to produce a desired initial guess, which causes the total sample complexity order-wisely more than necessary. To reduce the number of measurements, we propose a truncated power method to replace the spectral initialization for non-convex sparse phase retrieval algorithms. We prove that $m=\Omega(\bar{s} s\log n)$ measurements, where $\bar{s}$ is the stable sparsity of the underlying signal, are sufficient to produce a desired initial guess. When the underlying signal contains only very few significant components, the sample complexity of the proposed algorithm is $m=\Omega(s\log n)$ and optimal. Numerical experiments illustrate that the proposed method is more sample-efficient than state-of-the-art algorithms.


翻译:我们研究微薄的阶段检索问题,从只用星级的测量中回收一个耗资为1美元、耗资为1美元、耗资为1美元的信息信号。两阶段的非convex方法在最近的研究中引起了人们的极大关注。尽管不精确,许多两阶段的算法在适当初始化时可以明显地线性地汇合到基本解决方案。然而,从抽样复杂性来看,这些算法的瓶颈往往来自初始化阶段。虽然精细阶段通常只需要$m ⁇ Omega(s\log n)的测量,但在初始化阶段广泛使用的光谱初始化需要$m ⁇ Omega(s\2\log n)的测量,需要$%2\\\log n)$的测量才能产生预期的初步猜测结果。为了减少测量数量,我们提出了一种支力方法,以取代非convex稀释阶段的取样算法的光谱初始值($_O_rgrass)只有最起码的缩算方法。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
60+阅读 · 2020年3月19日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月14日
Multi-armed Bandit Learning on a Graph
Arxiv
0+阅读 · 2022年12月13日
Arxiv
16+阅读 · 2021年11月27日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员