A common approach to modeling networks assigns each node to a position on a low-dimensional manifold where distance is inversely proportional to connection likelihood. More positive manifold curvature encourages more and tighter communities; negative curvature induces repulsion. We consistently estimate manifold type, dimension, and curvature from simply connected, complete Riemannian manifolds of constant curvature. We represent the graph as a noisy distance matrix based on the ties between cliques, then develop hypothesis tests to determine whether the observed distances could plausibly be embedded isometrically in each of the candidate geometries. We apply our approach to data-sets from economics and neuroscience.
翻译:建模网络的通用方法将每个节点指派为低维方位, 其距离与连接的可能性成反比。 更积极的多曲线曲线会鼓励更多、更紧密的社区; 负曲线会引退。 我们从简单的连接、 完整的里曼尼的连续曲线形体中不断估算多重类型、 维度和曲度。 我们根据晶体之间的关联, 将图表代表为一个吵闹的距离矩阵, 然后开发假设测试, 以确定所观测到的距离是否可以合理嵌入每个候选的几何形状中。 我们对经济学和神经科学的数据集应用了我们的方法 。