Lung nodules are commonly missed in chest radiographs. We propose and evaluate P-AnoGAN, an unsupervised anomaly detection approach for lung nodules in radiographs. P-AnoGAN modifies the fast anomaly detection generative adversarial network (f-AnoGAN) by utilizing a progressive GAN and a convolutional encoder-decoder-encoder pipeline. Model training uses only unlabelled healthy lung patches extracted from the Indiana University Chest X-Ray Collection. External validation and testing are performed using healthy and unhealthy patches extracted from the ChestX-ray14 and Japanese Society for Radiological Technology datasets, respectively. Our model robustly identifies patches containing lung nodules in external validation and test data with ROC-AUC of 91.17% and 87.89%, respectively. These results show unsupervised methods may be useful in challenging tasks such as lung nodule detection in radiographs.
翻译:肺结核在胸腔射电图中通常被遗漏。 我们提议并评价P-AnoGAN,这是放射线中肺结核一种不受监督的异常检测方法。 P-AnoGAN通过使用渐进式GAN和共生编码器脱coder-encoder管道来修改快速异常检测基因对抗网络(f-AnoGAN)。示范培训只使用从印第安纳大学Chest X-Ray收藏中提取的无标签健康肺部补丁。使用ChestX-ray14和日本辐射技术学会数据集中提取的健康和不健康的补丁进行外部验证和测试。我们的模型有力地识别了外部验证和测试数据中含有肺结核的补丁,而ROC-AUC的验证和测试数据分别为91.17%和87.89%。这些结果表明,未经监督的方法可能有助于挑战诸如射电图中肺结核探测等任务。