As part of Rwanda's transition toward universal health coverage, the national Community-Based Health Insurance (CBHI) scheme is moving from retrospective fee-for-service reimbursements to prospective capitation payments for public primary healthcare providers. This report outlines a data-driven approach to designing, calibrating, and monitoring the capitation model using individual-level claims data from the Intelligent Health Benefits System (IHBS). We introduce a transparent, interpretable formula for allocating payments to Health Centers and their affiliated Health Posts. The formula is based on catchment population, service utilization patterns, and patient inflows, with parameters estimated via regression models calibrated on national claims data. Repeated validation exercises show the payment scheme closely aligns with historical spending while promoting fairness and adaptability across diverse facilities. In addition to payment design, the same dataset enables actionable behavioral insights. We highlight the use case of monitoring antibiotic prescribing patterns, particularly in pediatric care, to flag potential overuse and guideline deviations. Together, these capabilities lay the groundwork for a learning health financing system: one that connects digital infrastructure, resource allocation, and service quality to support continuous improvement and evidence-informed policy reform.
 翻译:暂无翻译