After decades of attention, emergence continues to lack a centralized mathematical definition that leads to a rigorous emergence test applicable to physical flocks and swarms, particularly those containing both deterministic elements (eg, interactions) and stochastic perturbations like measurement noise. This study develops a heuristic test based on singular value curve analysis of data matrices containing deterministic and Gaussian noise signals. The minimum detection criteria are identified, and statistical and matrix space analysis developed to determine upper and lower bounds. This study applies the analysis to representative examples by using recorded trajectories of mixed deterministic and stochastic trajectories for multi-agent, cellular automata, and biological video. Examples include Cucker Smale and Vicsek flocking, Gaussian noise and its integration, recorded observations of bird flocking, and 1D cellular automata. Ensemble simulations including measurement noise are performed to compute statistical variation and discussed relative to random matrix theory noise bounds. The results indicate singular knee analysis of recorded trajectories can detect gradated levels on a continuum of structure and noise. Across the eight singular value decay metrics considered, the angle subtended at the singular value knee emerges with the most potential for supporting cross-embodiment emergence detection, the size of noise bounds is used as an indication of required sample size, and the presence of a large fraction of singular values inside noise bounds as an indication of noise.
翻译:暂无翻译