We propose a domain decomposition method for the efficient simulation of nonlocal problems. Our approach is based on a multi-domain formulation of a nonlocal diffusion problem where the subdomains share "nonlocal" interfaces of the size of the nonlocal horizon. This system of nonlocal equations is first rewritten in terms of minimization of a nonlocal energy, then discretized with a meshfree approximation and finally solved via a Lagrange multiplier approach in a way that resembles the finite element tearing and interconnect method. Specifically, we propose a distributed projected gradient algorithm for the solution of the Lagrange multiplier system, whose unknowns determine the nonlocal interface conditions between subdomains. Several two-dimensional numerical tests illustrate the strong and weak scalability of our algorithm, which outperforms the standard approach to the distributed numerical solution of the problem. This work is the first rigorous numerical study in a two-dimensional multi-domain setting for nonlocal operators with finite horizon and, as such, it is a fundamental step towards increasing the use of nonlocal models in large scale simulations.
翻译:我们为高效模拟非本地问题提出一个域分解方法。 我们的方法基于一个非本地扩散问题的多域配方, 即子域共享非本地地平线大小的“ 非本地” 界面。 这个非本地方程式系统首先重写为将非本地能源最小化, 然后与网状近似分解, 最后通过拉格兰格乘数方法解决, 类似有限元素撕裂和互联的方法。 具体地说, 我们建议为 Lagrange 乘数系统的解决办法使用分布式预测梯度算法, 后者的未知性决定子域间非本地界面的条件。 几个二维数字测试显示了我们的算法的强弱可缩性, 它超越了对问题分布数字解决方案的标准方法。 这项工作是为具有有限地平线的非本地操作者在二维多域设置中进行首次严格的数字研究, 因此, 这是在大规模模拟中增加使用非本地模型的基本步骤 。