In this paper we present an asymptotically compatible meshfree method for solving nonlocal equations with random coefficients, describing diffusion in heterogeneous media. In particular, the random diffusivity coefficient is described by a finite-dimensional random variable or a truncated combination of random variables with the Karhunen-Lo\`{e}ve decomposition, then a probabilistic collocation method (PCM) with sparse grids is employed to sample the stochastic process. On each sample, the deterministic nonlocal diffusion problem is discretized with an optimization-based meshfree quadrature rule. We present rigorous analysis for the proposed scheme and demonstrate convergence for a number of benchmark problems, showing that it sustains the asymptotic compatibility spatially and achieves an algebraic or sub-exponential convergence rate in the random coefficients space as the number of collocation points grows. Finally, to validate the applicability of this approach we consider a randomly heterogeneous nonlocal problem with a given spatial correlation structure, demonstrating that the proposed PCM approach achieves substantial speed-up compared to conventional Monte Carlo simulations.


翻译:在本文中,我们提出了一个以随机系数解决非本地方程式的零星兼容网状方法,描述了不同介质的传播。特别是,随机的异差系数用一个有限维随机变量或随机变量与Karhunen-Lo ⁇ ⁇ e}分解的截断组合来描述,然后用一种稀疏网格的概率合用法(PCM)来抽样抽查过程。在每一个样本中,确定性的非本地扩散问题与一个基于优化的网格自由二次曲线规则分开。我们对拟议的办法进行严格分析,并展示一些基准问题的趋同性,表明它保持了空间上的零位兼容性,并在随机系数空间中实现了升温或亚稀释趋同率,随着合用点的增加。最后,为了证实这种方法是否适用,我们认为,与给定的空间相关结构存在随机的异差非本地问题。我们证明,拟议的PCM方法与传统的蒙特卡洛模拟模型相比,实现了大幅度的加速。

0
下载
关闭预览

相关内容

环太平洋多媒体会议(PCM)是一个重要的年度国际会议,其组织为论坛,以讨论理论,实验和应用多媒体分析与处理领域的最新进展和研究成果。 官网地址:http://dblp.uni-trier.de/db/conf/pcm/
专知会员服务
28+阅读 · 2021年8月2日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年9月4日
Arxiv
6+阅读 · 2021年6月24日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员