Recently, due to an increasing interest for transparency in artificial intelligence, several methods of explainable machine learning have been developed with the simultaneous goal of accuracy and interpretability by humans. In this paper, we study a recent framework of explainable clustering first suggested by Dasgupta et al.~\cite{dasgupta2020explainable}. Specifically, we focus on the $k$-means and $k$-medians problems and provide nearly tight upper and lower bounds. First, we provide an $O(\log k \log \log k)$-approximation algorithm for explainable $k$-medians, improving on the best known algorithm of $O(k)$~\cite{dasgupta2020explainable} and nearly matching the known $\Omega(\log k)$ lower bound~\cite{dasgupta2020explainable}. In addition, in low-dimensional spaces $d \ll \log k$, we show that our algorithm also provides an $O(d \log^2 d)$-approximate solution for explainable $k$-medians. This improves over the best known bound of $O(d \log k)$ for low dimensions~\cite{laber2021explainable}, and is a constant for constant dimensional spaces. To complement this, we show a nearly matching $\Omega(d)$ lower bound. Next, we study the $k$-means problem in this context and provide an $O(k \log k)$-approximation algorithm for explainable $k$-means, improving over the $O(k^2)$ bound of Dasgupta et al. and the $O(d k \log k)$ bound of \cite{laber2021explainable}. To complement this we provide an almost tight $\Omega(k)$ lower bound, improving over the $\Omega(\log k)$ lower bound of Dasgupta et al. All our algorithms run in near linear time in the number of points and the dimension.
翻译:最近,由于对人工智能透明度的兴趣日益浓厚,因此已经开发了几种可以解释的机器学习方法,其同时目标是人类的准确性和可解释性。 在本文中,我们研究了一个最新的可解释的群集框架,首先由 Dasgupta 等人提出 {cite{dasgupta202020Explain}。 具体地说,我们关注的焦点是美元- 平均值和美元- 中间值问题, 并且提供了几乎紧的上下线。 首先, 我们为可解释的 $( log klog kk k) 提供了一个美元( 美元- klog kk k) 的匹配算法 。 我们的算法也提供了美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 直径20 的常规运算 。