We propose a new approach for the image super-resolution (SR) task that progressively restores a high-resolution (HR) image from an input low-resolution (LR) image on the basis of a neural ordinary differential equation. In particular, we newly formulate the SR problem as an initial value problem, where the initial value is the input LR image. Unlike conventional progressive SR methods that perform gradual updates using straightforward iterative mechanisms, our SR process is formulated in a concrete manner based on explicit modeling with a much clearer understanding. Our method can be easily implemented using conventional neural networks for image restoration. Moreover, the proposed method can super-resolve an image with arbitrary scale factors on continuous domain, and achieves superior SR performance over state-of-the-art SR methods.
翻译:我们为图像超分辨率(SR)任务提出了一个新办法,根据神经普通差异方程式,从输入低分辨率(LR)图像中逐步恢复高分辨率图像,特别是我们新将SR问题作为一个初始价值问题,最初值是输入LR图像,与使用直接的迭代机制逐步更新的常规渐进SR方法不同,我们的SR进程是以明确模型和更加清晰的理解为基础,以具体的方式制定的。我们的方法可以很容易地使用传统的神经网络来恢复图像。此外,拟议方法可以以连续域的任意比例因素超级解析图像,并取得优于最先进的SR方法的超高SR性能。