Digital technology organizations routinely use online experiments (e.g. A/B tests) to guide their product and business decisions. In e-commerce, we often measure changes to transaction- or item-based business metrics such as Average Basket Value (ABV), Average Basket Size (ABS), and Average Selling Price (ASP); yet it remains a common pitfall to ignore the dependency between the value/size of transactions/items during experiment design and analysis. We present empirical evidence on such dependency, its impact on measurement uncertainty, and practical implications on A/B test outcomes if left unmitigated. By making the evidence available, we hope to drive awareness of the pitfall among experimenters in e-commerce and hence encourage the adoption of established mitigation approaches. We also share lessons learned when incorporating selected mitigation approaches into our experimentation analysis platform currently in production.
翻译:数字技术组织通常使用在线实验(例如A / B测试)来指导其产品和业务决策。在电子商务中,我们经常测量交易或基于物品的业务指标的变化,例如平均篮子价值(ABV),平均篮子大小(ABS)和平均售价(ASP)。然而,在实验设计和分析期间忽略交易/物品的价值/大小之间的依赖关系是一个常见的陷阱。我们提供了关于这种依赖性的实证证据,以及忽略该依赖性可能对测量不确定性造成的影响,并对如果未进行缓解就可能对A/B测试结果造成实际影响的实际后果提出了实际建议。通过提供这些证据,我们希望引起电子商务实验者对该陷阱的注意,并鼓励采用已经成熟的缓解方法。我们还分享了在我们当前生产中的实验分析平台中纳入选定缓解方法时获得的经验教训。