We introduce Patch Aligned Contrastive Learning (PACL), a modified compatibility function for CLIP's contrastive loss, intending to train an alignment between the patch tokens of the vision encoder and the CLS token of the text encoder. With such an alignment, a model can identify regions of an image corresponding to a given text input, and therefore transfer seamlessly to the task of open vocabulary semantic segmentation without requiring any segmentation annotations during training. Using pre-trained CLIP encoders with PACL, we are able to set the state-of-the-art on the task of open vocabulary zero-shot segmentation on 4 different segmentation benchmarks: Pascal VOC, Pascal Context, COCO Stuff and ADE20K. Furthermore, we show that PACL is also applicable to image-level predictions and when used with a CLIP backbone, provides a general improvement in zero-shot classification accuracy compared to CLIP, across a suite of 12 image classification datasets.
翻译:我们引入了“补丁统一对比学习”(PACL),这是CLIP对比性损失的经修改的兼容功能,意在对视觉编码器和文本编码器的CLS符号的补丁符号进行匹配。有了这种匹配,模型可以识别与给定文本输入相对应的图像区域,因此可以无缝地转换到开放词汇语义分隔部分的任务,而无需在培训期间作任何分解说明。我们使用预先培训的CLIP编码器与PALLLLC,能够根据4个不同的分解基准(Pascal VOC、Pascal环境、COCO Stuff和ADE20K)设定开放词汇零分解的状态。此外,我们表明,PACLC还适用于图像水平预测,当与CLIP主干柱一起使用时,与CLIP相比零发分类精确度总体上提高了12个图像分类数据集。