In this paper, we study how robots can autonomously learn skills that require a combination of navigation and grasping. Learning robotic skills in the real world remains challenging without large-scale data collection and supervision. Our aim is to devise a robotic reinforcement learning system for learning navigation and manipulation together, in an \textit{autonomous} way without human intervention, enabling continual learning under realistic assumptions. Specifically, our system, ReLMM, can learn continuously on a real-world platform without any environment instrumentation, without human intervention, and without access to privileged information, such as maps, objects positions, or a global view of the environment. Our method employs a modularized policy with components for manipulation and navigation, where uncertainty over the manipulation success drives exploration for the navigation controller, and the manipulation module provides rewards for navigation. We evaluate our method on a room cleanup task, where the robot must navigate to and pick up items of scattered on the floor. After a grasp curriculum training phase, ReLMM can learn navigation and grasping together fully automatically, in around 40 hours of real-world training.
翻译:在本文中,我们研究机器人如何自主地学习需要导航和掌握相结合的技能。在现实世界中学习机器人的技能,没有大规模数据收集和监督,仍然具有挑战性。我们的目标是设计一个机器人强化学习系统,在没有人类干预的情况下一起学习导航和操作,在现实假设下能够不断学习。具体地说,我们的系统(RLMM)可以在没有环境仪器的情况下,在现实世界平台上不断学习,没有人类干预,也没有获得诸如地图、物体位置或全球环境观等特许信息。我们的方法采用模块化政策,包括操作和导航组件,在操作成功方面的不确定性驱动导航控制器的探索,操作模块为导航提供奖励。我们评估我们的方法,在清理房间的任务中,机器人必须航行和捡起分散在地板上的物品。在掌握课程培训阶段后,RLMM可以在大约40小时的实际培训中,学习导航和完全自动地一起掌握。