Deep reinforcement learning (DRL) has been successfully used to solve various robotic manipulation tasks. However, most of the existing works do not address the issue of control stability. This is in sharp contrast to the control theory community where the well-established norm is to prove stability whenever a control law is synthesized. What makes traditional stability analysis difficult for DRL are the uninterpretable nature of the neural network policies and unknown system dynamics. In this work, stability is obtained by deriving an interpretable deep policy structure based on the $\textit{energy shaping}$ control of Lagrangian systems. Then, stability during physical interaction with an unknown environment is established based on $\textit{passivity}$. The result is a stability guaranteeing DRL in a model-free framework that is general enough for contact-rich manipulation tasks. With an experiment on a peg-in-hole task, we demonstrate, to the best of our knowledge, the first DRL with stability guarantee on a real robotic manipulator.


翻译:深度强化学习( DRL) 已被成功用于解决各种机器人操纵任务。 但是, 大部分现有作品并未解决控制稳定性问题。 这与控制理论界形成鲜明对比, 后者的既定规范就是在综合控制法时证明稳定。 传统稳定分析对于DRL来说很困难的是神经网络政策的不可解释性质和未知的系统动态。 在这项工作中, 稳定是通过基于对拉格朗江系统控制$\textit{ 能源成形$的可解释的深度政策结构获得的。 然后, 在与未知环境进行物理互动的过程中, 以$\ textit{ 被动度$建立稳定。 其结果是在无模式框架内保证DRL的稳定性, 这个框架对于接触丰富的操纵任务来说是十分普遍的。 在一项“ 连接孔” 任务实验中, 我们根据我们的知识, 展示了第一个具有真正机器人操纵器稳定性保证的DRL 。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
8+阅读 · 2021年5月21日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员