We present a novel method for reliable robot navigation in uneven outdoor terrains. Our approach employs a novel fully-trained Deep Reinforcement Learning (DRL) network that uses elevation maps of the environment, robot pose, and goal as inputs to compute an attention mask of the environment. The attention mask is used to identify reduced stability regions in the elevation map and is computed using channel and spatial attention modules and a novel reward function. We continuously compute and update a navigation cost-map that encodes the elevation information or the level-of-flatness of the terrain using the attention mask. We then generate locally least-cost waypoints on the cost-map and compute the final dynamically feasible trajectory using another DRL-based method. Our approach guarantees safe, locally least-cost paths and dynamically feasible robot velocities in uneven terrains. We observe an increase of 35.18% in terms of success rate and, a decrease of 26.14% in the cumulative elevation gradient of the robot's trajectory compared to prior navigation methods in high-elevation regions. We evaluate our method on a Husky robot in real-world uneven terrains (~ 4m of elevation gain) and demonstrate its benefits.
翻译:我们采用的方法是一个经过充分训练的深强化学习(DRL)网络,它使用环境高地图、机器人姿势和目标,作为计算环境关注面罩的投入。关注面罩用于在高地图中确定稳定程度下降的区域,并使用频道和空间关注模块和新的奖励功能进行计算。我们不断计算和更新一个导航成本图,该图将高地信息或地形的增缩程度编码起来。然后,我们用关注面罩在成本图上生成成本最低的地方点,用另一种基于DRL的方法计算最后动态可行的轨迹。我们的方法保证在不均匀的地形中安全、本地成本最低和动态可行的机器人速度。我们观察到成功率增加了35.18%,机器人轨迹的累积高度梯度比在高海拔地区以前的导航方法减少26.14%。我们用另一种基于DRL的方法评估了在现实世界不均匀地形中Husky机器人的计算方法,并展示了其收益。