Question generation (QG) is a natural language generation task where a model is trained to ask questions corresponding to some input text. Most recent approaches frame QG as a sequence-to-sequence problem and rely on additional features and mechanisms to increase performance; however, these often increase model complexity, and can rely on auxiliary data unavailable in practical use. A single Transformer-based unidirectional language model leveraging transfer learning can be used to produce high quality questions while disposing of additional task-specific complexity. Our QG model, finetuned from GPT-2 Small, outperforms several paragraph-level QG baselines on the SQuAD dataset by 0.95 METEOR points. Human evaluators rated questions as easy to answer, relevant to their context paragraph, and corresponding well to natural human speech. Also introduced is a new set of baseline scores on the RACE dataset, which has not previously been used for QG tasks. Further experimentation with varying model capacities and datasets with non-identification type questions is recommended in order to further verify the robustness of pretrained Transformer-based LMs as question generators.


翻译:问题生成(QG)是一项天然语言生成任务,在这种任务中,一个模型经过培训,可以提出与某些输入文本相应的问题。大多数最新方法将QG作为一个顺序到顺序的问题,并依靠额外的特征和机制来提高绩效;然而,这些往往会增加模型复杂性,而且可以依赖实际使用中无法获得的辅助数据。一个单一的基于变异器的单向单向语言模式,利用转让学习来生成高质量的问题,同时处理额外任务的复杂性。我们从GPT-2 SmL微调出来的QG模型优于由0.95 METEOR点组成的SQuAD数据集的若干段落级QG基线。人类评价员将问题评为容易回答的问题,与其上下文段落相关,并与自然人讲话相对应。还引入了RACE数据集的一套新的基线分数,该数据集以前没有用于QG任务。建议用不同模型能力和非识别型问题数据集进行进一步实验,以便进一步核实以问题发电机为训练有素前的LMS的精密性。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年6月6日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
25+阅读 · 2020年10月15日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Question Generation by Transformers
Arxiv
5+阅读 · 2019年9月14日
Arxiv
6+阅读 · 2018年5月22日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员