Discourse analysis and discourse parsing have shown great impact on many important problems in the field of Natural Language Processing (NLP). Given the direct impact of discourse annotations on model performance and interpretability, robustly extracting discourse structures from arbitrary documents is a key task to further improve computational models in NLP. To this end, we present a new, supervised paradigm directly tackling the domain adaptation issue in discourse parsing. Specifically, we introduce the first fully supervised discourse parser designed to alleviate the domain dependency through a staged model of weak classifiers by introducing the gradient boosting framework.
翻译:鉴于讨论说明对示范性业绩和可解释性的直接影响,从任意文件中大力提取讨论结构是进一步改进国家语言规划中计算模型的一项关键任务。 为此,我们提出了一个新的、受监督的范例,直接处理讨论分类中的领域适应问题。具体地说,我们引入了第一个受到全面监督的谈话分析器,目的是通过引入梯度加速框架,通过一个弱分层者的分阶段模式,减轻对域的依赖性。