Despite the availability of large amounts of genomics data, medical treatment recommendations have not successfully used them. In this paper, we consider the utility of high dimensional genomic-clinical data and nonparametric methods for making cancer treatment recommendations. This builds upon the framework of the individualized treatment rule [Qian and Murphy 2011] but we aim to overcome their method's limitations, specifically in the instances when the method encounters a large number of covariates and an issue of model misspecification. We tackle this problem using a dimension reduction method, namely Sliced Inverse Regression (SIR, [Li 1991]), with a rich class of models for the treatment response. Notably, SIR defines a feature space for high-dimensional data, offering an advantage similar to those found in the popular neural network models. With the features obtained from SIR, a simple visualization is used to compare different treatment options and present the recommended treatment. Additionally, we derive the consistency and the convergence rate of the proposed recommendation approach through a value function. The effectiveness of the proposed approach is demonstrated through simulation studies and the promising results from a real-data example of the treatment of multiple myeloma.
翻译:尽管存在大量基因组数据,但医疗建议并未成功使用这些数据。在本文件中,我们考虑了高维基因组临床数据和非参数方法对癌症治疗建议的作用。这基于个性化治疗规则的框架[2011年基安和墨菲],但我们的目标是克服其方法的局限性,特别是在该方法遇到大量共变和模型错误区分的情况下。我们使用一个减少维度的方法,即倾销反反反反反反反回归法(SIR,[1991年利 )来解决这一问题,该方法有丰富的治疗反应模型。值得注意的是,SIR为高度数据确定了一个特征空间,提供了类似于流行神经网络模型中发现的优势。根据SIR的特征,我们用一个简单的直观来比较不同的治疗方案并介绍所建议的治疗方法。此外,我们通过一个价值函数来得出拟议建议方法的一致性和趋同率。通过模拟研究以及我多种眼瘤治疗的真实数据实例来证明拟议方法的有效性。