The majority of recommendation algorithms are evaluated on the basis of historic benchmark datasets. Evaluation on historic benchmark datasets is quick and cheap to conduct, yet excludes the viewpoint of users who actually consume recommendations. User feedback is seldom collected, since it requires access to an operational recommender system. Establishing and maintaining an operational recommender system imposes a timely and financial burden that a majority of researchers cannot shoulder. We aim to reduce this burden in order to promote widespread user-centric evaluations of recommendation algorithms, in particular for novice researchers in the field. We present work in progress on an evaluation tool that implements a novel paradigm that enables user-centric evaluations of recommendation algorithms without access to an operational recommender system. Finally, we sketch the experiments we plan to conduct with the help of the evaluation tool.
翻译:大多数建议算法都是根据历史基准数据集进行评价的。对历史基准数据集的评价是快速和廉价的,但排除了实际采纳建议的用户的观点。用户反馈很少收集,因为需要使用操作建议系统。建立和维持操作建议系统带来了大多数研究人员无法承担的及时和财务负担。我们旨在减轻这一负担,以促进对建议算法进行广泛的以用户为中心的评价,特别是对外地的新研究人员。我们介绍了一个评价工具,该工具采用新的模式,使无法使用操作建议系统对建议算法进行以用户为中心的评价成为可能。最后,我们描述了我们计划在评价工具的帮助下进行的实验。