It is crucial to build multiscale modeling for the coupling effects between microstructure and the physical mechanisms in multiphysics problems. In the paper, we develop a coupling formulation of the generalized multiscale finite element method (GMsFEM) to solve coupled thermomechanical problems, and it is referred as the coupling generalized multiscale finite element method (CGMsFEM). The approach consists in defining the coupling multiscale basis functions through local coupling spectral problems in each coarse-grid block, which can be solved by a novel design of two relaxation parameters. Compared to the standard GMsFEM, the proposed strategy can not only accurately capture the multiscale coupling correlation effects of multiphysics problems, but also greatly improve the computational efficiency with fewer multiscale basis functions. In addition, the convergence analysis is also established, and the optimal error estimates are derived, where the upper bound of errors is independent of the magnitude of the relaxation coefficient. Several numerical examples for periodic, random microstructure, and random material coefficients are presented to validate the theoretical analysis. The numerical results show that the CGMsFEM approach shows better robustness and efficiency than uncoupled GMsFEM.
翻译:对于在多物理问题中微结构与物理机制之间的混合效应,必须建立多尺度模型; 在文件中,我们开发了通用多尺度有限元素法(GMSFEM)的组合配方,以解决混合的热力问题,并称之为通用多尺度有限元素法(CGMSFEM)。 这种方法包括通过每个粗格网块的本地混合光谱问题来界定混合的多尺度功能,这可以通过两个放松参数的新设计来解决。与标准的GMSFEM相比,拟议战略不仅能够准确地捕捉多物理问题的多尺度相关效应,而且能够大大提高计算效率,同时减少多尺度的功能。此外,还建立了趋同分析,并得出了最佳误差估计,因为误差的上限独立于宽松系数的大小。为定期、随机微结构和随机材料系数提供了几个数字示例,用以验证理论分析。 数字结果显示, CGMFEMM方法比未升级的GMEMF方法更稳健、效率更高。