In this work we develop implicit Active Flux schemes for the scalar advection equation. At every cell interface we approximate the solution by a polynomial in time. This allows to evolve the point values using characteristics and to update the cell averages using fluxes obtained by integrating this polynomial. The resulting schemes have order of convergence up to five, but show almost no oscillations with high frequencies for discontinuous solutions. In numerical experiments we compare the different methods and show an application to network flows.
翻译:在这项工作中,我们开发了隐式主动通量方案,用于标量平流方程。我们在每个单元界面上,通过时间多项式来近似解。这样可以使用特征值演化点值,并通过积分多项式来更新单元平均值,从而获得通量。所得到的方案收敛阶数高达五阶,但对于不连续解几乎没有高频振荡。在数值实验中,我们比较了不同方法,并展示了它在网络流中的应用。