Light field (LF) images with the multi-view property have many applications, which can be severely affected by the low-light imaging. Recent learning-based methods for low-light enhancement have their own disadvantages, such as no noise suppression, complex training process and poor performance in extremely low-light conditions. Targeted on solving these deficiencies while fully utilizing the multi-view information, we propose an efficient Low-light Restoration Transformer (LRT) for LF images, with multiple heads to perform specific intermediate tasks, including denoising, luminance adjustment, refinement and detail enhancement, within a single network, achieving progressive restoration from small scale to full scale. We design an angular transformer block with a view-token scheme to model the global angular relationship efficiently, and a multi-scale window-based transformer block to encode the multi-scale local and global spatial information. To solve the problem of insufficient training data, we formulate a synthesis pipeline by simulating the major noise with the estimated noise parameters of LF camera. Experimental results demonstrate that our method can achieve superior performance on the restoration of extremely low-light and noisy LF images with high efficiency.


翻译:多视图属性的光场图像有许多应用,这些应用会受到低光成像的严重影响。最近以学习为基础的低光增强方法本身也有其缺点,例如没有噪音抑制、复杂的培训过程和极低光条件下的性能差。在充分利用多视图信息的同时,我们为解决这些缺陷提出一个高效的低光恢复变异器(LRT),供LF图像使用,由多个头执行特定的中间任务,包括拆落、亮度调整、精细度和细节增强,在一个单一网络内实现从小规模逐步恢复到全面规模。我们设计了一个具有视觉图案的角变异器块,以高效地模拟全球角关系,并设计一个多尺度的基于窗口的变异器块,以编码多尺度的当地和全球空间信息。为解决培训数据不足的问题,我们通过用估计的低光度摄影机噪音参数模拟主要噪音,来制定一个合成管道。实验结果表明,我们的方法可以在恢复极低光度和振动的低频图像方面取得优异性。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
35+阅读 · 2022年3月14日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
16+阅读 · 2021年3月2日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员