Intelligent service robots require the ability to perform a variety of tasks in dynamic environments. Despite the significant progress in robotic grasping, it is still a challenge for robots to decide grasping position when given different tasks in unstructured real life environments. In order to overcome this challenge, creating a proper knowledge representation framework is the key. Unlike the previous work, in this paper, task is defined as a triplet including grasping tool, desired action and target object. Our proposed algorithm GATER (Grasp--Action--Target Embeddings and Relations) models the relationship among grasping tools--action--target objects in embedding space. To validate our method, a novel dataset is created for task-specific grasping. GATER is trained on the new dataset and achieve task-specific grasping inference with 94.6\% success rate. Finally, the effectiveness of GATER algorithm is tested on a real service robot platform. GATER algorithm has its potential in human behavior prediction and human-robot interaction.
翻译:智能服务机器人需要有能力在动态环境中执行各种任务。 尽管在机器人捕捉方面取得了显著进展, 机器人在给没有结构化的现实生活环境中赋予不同任务时决定掌握位置仍然是一项挑战。 为了克服这一挑战, 创建适当的知识代表框架是关键。 与先前的工作不同, 在本文中, 任务被定义为三重任务, 包括捕捉工具、 理想的行动和目标对象。 我们提议的算法GATER( Garsp- Action- Taget 嵌入和关系) 模型显示在嵌入空间中捕捉工具- 动作- 目标对象物体之间的关系。 为了验证我们的方法, 创建了一个用于具体任务抓取的新数据集。 GATER 接受了新数据集的培训, 并实现了以94.6 ⁇ 成功率掌握具体任务的判断。 最后, GATER 算法的有效性将在一个真正的服务机器人平台上测试。 GATER 算法在人类行为预测和人类- 机器人互动中具有潜力 。