The fundamental principle of Graph Neural Networks (GNNs) is to exploit the structural information of the data by aggregating the neighboring nodes using a `graph convolution' in conjunction with a suitable choice for the network architecture, such as depth and activation functions. Therefore, understanding the influence of each of the design choice on the network performance is crucial. Convolutions based on graph Laplacian have emerged as the dominant choice with the symmetric normalization of the adjacency matrix as the most widely adopted one. However, some empirical studies show that row normalization of the adjacency matrix outperforms it in node classification. Despite the widespread use of GNNs, there is no rigorous theoretical study on the representation power of these convolutions, that could explain this behavior. Similarly, the empirical observation of the linear GNNs performance being on par with non-linear ReLU GNNs lacks rigorous theory. In this work, we theoretically analyze the influence of different aspects of the GNN architecture using the Graph Neural Tangent Kernel in a semi-supervised node classification setting. Under the population Degree Corrected Stochastic Block Model, we prove that: (i) linear networks capture the class information as good as ReLU networks; (ii) row normalization preserves the underlying class structure better than other convolutions; (iii) performance degrades with network depth due to over-smoothing, but the loss in class information is the slowest in row normalization; (iv) skip connections retain the class information even at infinite depth, thereby eliminating over-smoothing. We finally validate our theoretical findings numerically and on real datasets such as Cora and Citeseer.
翻译:暂无翻译