The estimation of heterogeneous treatment effects (HTEs) has attracted considerable interest in many disciplines, most prominently in medicine and economics. Contemporary research has so far primarily focused on continuous and binary responses where HTEs are traditionally estimated by a linear model, which allows the estimation of constant or heterogeneous effects even under certain model misspecifications. More complex models for survival, count, or ordinal outcomes require stricter assumptions to reliably estimate the treatment effect. Most importantly, the noncollapsibility issue necessitates the joint estimation of treatment and prognostic effects. Model-based forests allow simultaneous estimation of covariate-dependent treatment and prognostic effects, but only for randomized trials. In this paper, we propose modifications to model-based forests to address the confounding issue in observational data. In particular, we evaluate an orthogonalization strategy originally proposed by Robinson (1988, Econometrica) in the context of model-based forests targeting HTE estimation in generalized linear models and transformation models. We found that this strategy reduces confounding effects in a simulated study with various outcome distributions. We demonstrate the practical aspects of HTE estimation for survival and ordinal outcomes by an assessment of the potentially heterogeneous effect of Riluzole on the progress of Amyotrophic Lateral Sclerosis.
翻译:对不同治疗效果(HTEs)的估计在许多学科中引起了相当大的兴趣,特别是在医学和经济学方面。迄今为止,当代研究主要侧重于连续和二元反应,其中,HTEs传统上是由线性模型估计的,这种模型允许即使在某些模型有误地估计常态或多种效应。更复杂的生存、计数或交点结果模型要求更严格地假设生存、计数或交点结果模型,以便可靠地估计治疗效果。最重要的是,非重叠问题要求对治疗和预测效应进行联合估计。以模型为基础的森林允许同时估计共变依赖治疗和预测效应,但仅限于随机试验。在本文件中,我们提议修改基于模型的森林,以解决观测数据中的混杂问题。特别是,我们评估鲁滨逊(1988年,Econnologica)最初在一般线性模型和转型模型中针对HTE估计的基于模型的森林(1988年,Econnomicrica)提出的一种或分解战略。我们发现,这一战略降低了模拟研究与各种结果分布的模拟研究的混为效应。我们通过实验展示HTEl对后期的模型估计对生存和Amicilsmissulovic结果的实际影响或未来结果结果的评估,我们展示了HTElsMismissmissil 的后期评估的实际方面。