Despite the fast development of multi-agent systems (MAS) and multi-agent reinforcement learning (MARL) algorithms, there is a lack of unified evaluation platforms and commonly-acknowledged baseline implementation. Therefore, an urgent need is to develop an integrated library suite that delivers reliable MARL implementation and replicable evaluation in various benchmarks. To fill such a research gap, in this paper, we propose MARLlib, a comprehensive MARL algorithm library for solving multi-agent problems. With a novel design of agent-level distributed dataflow, MARLlib manages to unify tens of algorithms in a highly composable integration style. Moreover, MARLlib goes beyond current work by integrating diverse environment interfaces and providing flexible parameter sharing strategies; this allows for versatile solutions to cooperative, competitive, and mixed tasks with minimal code modifications for end users. Finally, MARLlib provides easy-to-use APIs and a fully decoupled configuration system to help end users manipulate the learning process. A plethora of experiments is conducted to substantiate the correctness of our implementation, based on which we further derive new insights into the relationship between the performance and the design of algorithmic components. With MARLlib, we expect researchers to be able to tackle broader real-world multi-agent problems with trustworthy solutions. Github: \url{https://github.com/Replicable-MARL/MARLlib
翻译:暂无翻译