Neural implicit representations have recently shown encouraging results in various domains, including promising progress in simultaneous localization and mapping (SLAM). Nevertheless, existing methods produce over-smoothed scene reconstructions and have difficulty scaling up to large scenes. These limitations are mainly due to their simple fully-connected network architecture that does not incorporate local information in the observations. In this paper, we present NICE-SLAM, a dense SLAM system that incorporates multi-level local information by introducing a hierarchical scene representation. Optimizing this representation with pre-trained geometric priors enables detailed reconstruction on large indoor scenes. Compared to recent neural implicit SLAM systems, our approach is more scalable, efficient, and robust. Experiments on five challenging datasets demonstrate competitive results of NICE-SLAM in both mapping and tracking quality. Project page: https://pengsongyou.github.io/nice-slam
翻译:最近,在各个领域,包括同时进行本地化和绘图(SLAM)方面,Neal隐含的表达方式显示出令人鼓舞的结果,包括同时进行本地化和绘图(SLAM)方面有望取得令人振奋的进展;然而,现有的方法产生了过度移动的场景重建,并难以推广到大场景;这些局限性主要是由于其简单的、完全连接的网络结构没有将本地信息纳入观测中;在本文件中,我们介绍了NICE-SLAM,这是一个密集的SLAM系统,它通过采用上下级的场景代表方式将多层次的地方信息纳入其中;优化这种表述方式,预先培训的几何前前科可以使大型室内场景进行详细的重建。与最近的神经隐蔽的SLAM系统相比,我们的方法更加可伸缩、高效和有力。对五个具有挑战性的数据集的实验显示了NICE-SLAM在测绘和跟踪质量方面的竞争性结果。项目网页:https://pengsongyou.gthub.io/nice-slam。