We propose stochastic variance reduced algorithms for solving convex-concave saddle point problems, monotone variational inequalities, and monotone inclusions. Our framework applies to extragradient, forward-backward-forward, and forward-reflected-backward methods both in Euclidean and Bregman setups. All proposed methods converge in the same setting as their deterministic counterparts and they either match or improve the best-known complexities for solving structured min-max problems. Our results reinforce the correspondence between variance reduction in variational inequalities and minimization. We also illustrate the improvements of our approach with numerical evaluations on matrix games.
翻译:我们建议采用随机差异减少的算法,以解决二次曲线裂口问题、单色调差不平等和单色包容。我们的框架适用于Euclidean和Bregman设置的超级、前向前向前向和前向反向后向方法。所有拟议方法都与确定型对等方法相融合,它们要么匹配,要么改进解决结构化微轴问题最著名的复杂方法。我们的结果强化了差异性不平等和最小化差异的对应性。我们还介绍了我们在矩阵游戏上进行数字评估的方法的改进。