In this article we apply a discrete action principle for the Vlasov--Maxwell equations in a structure-preserving particle-field discretization framework. In this framework the finite-dimensional electromagnetic potentials and fields are represented in a discrete de Rham sequence involving general finite element spaces, and the particle-field coupling is represented by a set of projection operators that commute with the differential operators. With a minimal number of assumptions which allow for a variety of finite elements and shape functions for the particles, we show that the resulting variational scheme has a general discrete Poisson structure and thus leads to a semi-discrete Hamiltonian system. By introducing discrete interior products we derive a second type of space discretization which is momentum preserving, based on the same finite elements and shape functions. We illustrate our method by applying it to spline finite elements, and to a new spectral discretization where the particle-field coupling relies on discrete Fourier transforms.


翻译:在本条中,我们对Vlasov-Maxwell方程式应用了一种离散行动原则,用于结构保存颗粒场分解框架。在这个框架中,有限维电磁潜能和字段在离散的脱兰序列中体现,涉及一般的有限元素空间,粒子场的结合由一组投影操作员代表,他们与差异操作员通勤。根据少量的假设,允许粒子的多种有限元素和形状功能,我们表明由此产生的变异方案有一个一般离散的Poisson结构,从而导致一个半分解的汉密尔顿系统。通过引入离散的内产产品,我们根据相同的有限元素和形状功能,产生另一种正在保持动力的离散空间。我们通过将它应用到微线有限元素和粒子场组合依赖离散的Fourier变异的新的光谱分解法来说明我们的方法。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员