A general stochastic algorithm for solving mixed linear and nonlinear problems was introduced in [11]. We show in this paper how it can be used to solve the fault inverse problem, where a planar fault in elastic half-space and a slip on that fault have to be reconstructed from noisy surface displacement measurements. With the parameter giving the plane containing the fault denoted by m and the regularization parameter for the linear part of the inverse problem denoted by C, both modeled as random variables, we derive a formula for the posterior marginal of m. Modeling C as a random variable allows to sweep through a wide range of possible values which was shown to be superior to selecting a fixed value [11]. We prove that this posterior marginal of m is convergent as the number of measurement points and the dimension of the space for discretizing slips increase. Simply put, our proof only assumes that the regularized discrete error functional for processing measurements relates to an order 1 quadrature rule and that the union of the finite-dimensional spaces for discretizing slips is dense. Our proof relies on trace class operator theory to show that an adequate sequence of determinants is uniformly bounded. We also explain how our proof can be extended to a whole class of inverse problems, as long as some basic requirements are met. Finally, we show numerical simulations that illustrate the numerical convergence of our algorithm.


翻译:在 [11] 中引入了解决线性和非线性混合问题的一般随机算法。 我们在本文件中展示了一种解决线性和非线性问题的一般随机算法。 我们在本文件中展示了如何用它来解决反差问题, 即弹性半空的平板错误和断层滑落必须从噪音的表面迁移测量中重建。 参数使平面包含由 m 和 C 所标注的反向问题的线性部分的断层错误的正规化参数, 两者都以随机变量为模型, 我们为M 的后边缘 得出了一个公式。 随机变量建模 C 能够通过一系列可能的数值进行扫荡, 这表明它优于选择固定值 [11] 。 我们证明, 平面半平面的平面边缘是测量点的数量和分离滑移空间的维度。 简而言之, 我们的证据仅假设, 正常化的离差差差差值与顺序 1 之规则有关, 离裂性空间的结合是密的。 我们的证据依赖于追踪的分类操作者理论, 最终显示我们基本的平整的定序, 我们的平整的平整的平整的平整的平局性解释。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
干货|深度神经网络(DNN)反向传播算法(BP)
全球人工智能
7+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
干货|深度神经网络(DNN)反向传播算法(BP)
全球人工智能
7+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员