We deal with the Finite Element Tearing and Interconnecting Dual Primal (FETI-DP) preconditioner for elliptic problems discretized by the virtual element method (VEM). We extend the result of [22] to the three dimensional case. We prove polylogarithmic condition number bounds, independent of the number of subdomains, the mesh size, and jumps in the diffusion coefficients. Numerical experiments validate the theory
翻译:我们处理由虚拟元素法(VEM)分离的椭圆性问题的有限元素撕裂和互连双重原始(FETI-DP)先决条件。我们把[22]的结果扩大到三维案例。我们证明多对数条件数界限,不取决于子域的数目、网状大小和扩散系数的跳跃。数字实验证实了这个理论。