We introduce a generalized finite difference method for solving a large range of fully nonlinear elliptic partial differential equations in three dimensions. Methods are based on Cartesian grids, augmented by additional points carefully placed along the boundary at high resolution. We introduce and analyze a least-squares approach to building consistent, monotone approximations of second directional derivatives on these grids. We then show how to efficiently approximate functions of the eigenvalues of the Hessian through a multi-level discretization of orthogonal coordinate frames in $\mathbb{R}^3$. The resulting schemes are monotone and fit within many recently developed convergence frameworks for fully nonlinear elliptic equations including non-classical Dirichlet problems that admit discontinuous solutions, Monge-Amp\`ere type equations in optimal transport, and eigenvalue problems involving nonlinear elliptic operators. Computational examples demonstrate the success of this method on a wide range of challenging examples.
翻译:我们引入了一种通用的有限差异法,以解决三维的多种完全非线性椭圆偏差方程式; 方法以笛卡尔格网格为基础,并辅之以沿高分辨率边界仔细铺设的额外点; 我们引入并分析一种最小平方法,在这些格格上建立一致的、单色近似二向衍生物; 然后我们展示如何通过以$\mathbb{R ⁇ 3$对正方形坐标框架进行多级分解,有效地近似赫斯人双向值的功能; 由此形成的方案是单质法,适合最近为完全非线性椭圆方程式制定的许多趋同框架,包括允许不连续解决办法的非古典异异异异方程式问题、 最佳运输中的蒙古-安培方程式和涉及非线性椭圆操作者的等值问题。 通过一系列具有挑战性的例子,比较的例子表明这一方法的成功。