We propose the Truncated Nonsmooth Newton Multigrid Method (TNNMG) as a solver for the spatial problems of the small-strain brittle-fracture phase-field equations. TNNMG is a nonsmooth multigrid method that can solve biconvex, block-separably nonsmooth minimization problems in roughly the time of solving one linear system of equations. It exploits the variational structure inherent in the problem, and handles the pointwise irreversibility constraint on the damage variable directly, without penalization or the introduction of a local history field. Memory consumption is significantly lower compared to approaches based on direct solvers. In the paper we introduce the method and show how it can be applied to several established models of phase-field brittle fracture. We then prove convergence of the solver to a solution of the nonsmooth Euler-Lagrange equations of the spatial problem for any load and initial iterate. Numerical comparisons to an operator-splitting algorithm show a speed increase of more than one order of magnitude, without loss of robustness.
翻译:我们建议采用脱线的Nonsmooth Newton Multigrid 方法(TNNMG),作为小面积丁堡断裂阶段方程式空间问题的解答器。TNNMG是一种非脱线的多格方法,在解决一个线性方程式时可以解决双convex、块分的、不单线性最小化的问题。它利用问题固有的变异结构,直接处理对损坏变量的点向不可逆转性限制,而不惩罚或引入本地历史字段。内存消耗比基于直接解析器的方法要低得多。在文件中,我们介绍该方法,并展示如何将其应用到几个已确立的阶段-野性碎裂模式中。然后,我们证明溶剂与任何负载和初始偏移的空间问题的非moote Euler-Lagrange方程式的解析。与操作员分解算法相比,其速度增长速度超过一个数量级,而不丧失坚固性。