The scattering of electromagnetic waves from obstacles with wave-material interaction in thin layers on the surface is described by generalized impedance boundary conditions, which provide effective approximate models. In particular, this includes a thin coating around a perfect conductor and the skin effect of a highly conducting material. The approach taken in this work is to derive, analyse and discretize a system of time-dependent boundary integral equations that determines the tangential traces of the scattered electric and magnetic fields. In a second step the fields are evaluated in the exterior domain by a representation formula, which uses the time-dependent potential operators of Maxwell's equations. A key role in the well-posedness of the time-dependent boundary integral equations and the stability of the numerical discretization is taken by the coercivity of the Calder\'on operator for the time-harmonic Maxwell's equations with frequencies in a complex half-plane. This entails the coercivity of the full boundary operator that includes the impedance operator. The system of time-dependent boundary integral equations is discretized with Runge--Kutta based convolution quadrature in time and Raviart--Thomas boundary elements in space. The full discretization is proved to be stable and convergent, with explicitly given rates in the case of sufficient regularity. The theoretical results are illustrated by numerical experiments.
翻译:电磁波从表面薄层中波状物质相互作用的障碍物中散落的电磁波,其描述是普遍的阻力边界条件,提供了有效的近似模型,特别是,这包括围绕一个完美导体的薄薄涂层,以及高度导体的皮肤效应。这项工作采取的方法是产生、分析和分解一个时间依赖的边界整体方程式系统,确定分散的电磁场的相近痕迹。第二步是用一个代表公式在外部领域对字段进行评价,该公式使用马克斯韦尔方程式中时间依赖的潜在操作者。在时间依赖的边界整体方程式中,一个关键作用是精密覆盖一个完美的导导体,以及数字分解作用的稳定性由Calder\'on操作者为时间-和谐的马克斯韦尔方程式的共和等式系统,该方程式的频率在复杂的半平面上决定。这需要由完整的边界操作者(包括阻力操作者)全边域操作者来评估。根据时间依赖的边界综合方程式系统与基于龙格-库塔方程式的共等方程式操作者分解。一个关键作用作用,在精确的正态的正态定的正态度中,其精确的正态正态结果被证明为精确的精确的精确度。在精确度实验性,在精确度上,在精确的轨定的精确度实验结果,在精确的精确度上得到演化。