We propose a computational model of situated language comprehension based on the Indexical Hypothesis that generates meaning representations by translating amodal linguistic symbols to modal representations of beliefs, knowledge, and experience external to the linguistic system. This Indexical Model incorporates multiple information sources, including perceptions, domain knowledge, and short-term and long-term experiences during comprehension. We show that exploiting diverse information sources can alleviate ambiguities that arise from contextual use of underspecific referring expressions and unexpressed argument alternations of verbs. The model is being used to support linguistic interactions in Rosie, an agent implemented in Soar that learns from instruction.
翻译:我们根据指数假设提出一个定位语言理解的计算模型,该模型将现代语言符号转化为语言系统外信仰、知识和经验的模式表达,从而产生意义表示。该指数模型包含多种信息来源,包括认知、领域知识以及理解期间的短期和长期经验。我们表明,利用各种信息来源可以减轻因使用具体参考表达方式和动词未经表达的交替而出现的模糊性。该模型正在用于支持罗西的语言互动,罗西是一个在苏尔实施的从教学中学习的代理人。