Currently available quantum computers suffer from constraints including hardware noise and a limited number of qubits. As such, variational quantum algorithms that utilise a classical optimiser in order to train a parameterised quantum circuit have drawn significant attention for near-term practical applications of quantum technology. In this work, we take a probabilistic point of view and reformulate the classical optimisation as an approximation of a Bayesian posterior. The posterior is induced by combining the cost function to be minimised with a prior distribution over the parameters of the quantum circuit. We describe a dimension reduction strategy based on a maximum a posteriori point estimate with a Laplace prior. Experiments on the Quantinuum H1-2 computer show that the resulting circuits are faster to execute and less noisy than the circuits trained without the dimension reduction strategy. We subsequently describe a posterior sampling strategy based on stochastic gradient Langevin dynamics. Numerical simulations on three different problems show that the strategy is capable of generating samples from the full posterior and avoiding local optima.
翻译:目前可用的量子计算机受到各种限制,包括硬件噪音和数量有限的qubit。因此,使用古典优化器来培训参数化量子电路的变量量算法已经引起对量子技术近期实际应用的极大关注。在这项工作中,我们从概率的角度看待经典优化,并重塑作为巴耶西亚子星座近似值的典型优化。后继体是将成本函数与量子电路参数的先前分布合并,从而引出后继体。我们描述一个基于前拉普尔后端估计值的尺寸削减战略。在Qautinum H1-2计算机上进行的实验显示,所产生的电路执行速度快,而且不比没有降低尺寸战略而训练的电路更吵。我们随后描述了一个基于Stochatictic Telandevin动态的后导取样战略。关于三个不同问题的数值模拟表明,该战略能够从完整的海面图上生成样本,避免本地选取。