Optimizing parameterized quantum circuits is a key routine in using near-term quantum devices. However, the existing algorithms for such optimization require an excessive number of quantum-measurement shots for estimating expectation values of observables and repeating many iterations, whose cost has been a critical obstacle for practical use. We develop an efficient alternative optimization algorithm, stochastic gradient line Bayesian optimization (SGLBO), to address this problem. SGLBO reduces the measurement-shot cost by estimating an appropriate direction of updating circuit parameters based on stochastic gradient descent (SGD) and further utilizing Bayesian optimization (BO) to estimate the optimal step size for each iteration in SGD. In addition, we formulate an adaptive measurement-shot strategy and introduce a technique of suffix averaging to reduce the effect of statistical and hardware noise. Our numerical simulation demonstrates that the SGLBO augmented with these techniques can drastically reduce the measurement-shot cost, improve the accuracy, and make the optimization noise-robust.
翻译:优化参数化量子电路是使用近期量子装置的关键例行工作,然而,目前这种优化的算法需要过多的量度测针,以估计可观测到的预期值和重复许多迭代,其成本是实际使用的一个重大障碍。我们开发了高效的替代优化算法,即随机梯度梯度线贝叶西亚优化(SGLBO),以解决这一问题。SGLBO通过估计更新基于随机梯度下沉的电路参数的适当方向,进一步利用巴伊西亚优化(BO)来估计SGD中每种迭代的最佳步数。此外,我们制定了适应性计量速率战略,并引入了平均的配料技术,以降低统计和硬件噪音的影响。我们的数字模拟表明,SGLBOO以这些技术扩充,可以大幅降低测量速率成本,提高准确度,并使噪号优化。