Deep neural networks (DNNs) and, in particular, convolutional neural networks (CNNs) have brought significant advances in a wide range of modern computer application problems. However, the increasing availability of large amounts of datasets as well as the increasing available computational power of modern computers lead to a steady growth in the complexity and size of DNN and CNN models, and thus, to longer training times. Hence, various methods and attempts have been developed to accelerate and parallelize the training of complex network architectures. In this work, a novel CNN-DNN architecture is proposed that naturally supports a model parallel training strategy and that is loosely inspired by two-level domain decomposition methods (DDM). First, local CNN models, that is, subnetworks, are defined that operate on overlapping or nonoverlapping parts of the input data, for example, sub-images. The subnetworks can be trained completely in parallel. Each subnetwork outputs a local decision for the given machine learning problem which is exclusively based on the respective local input data. Subsequently, an additional DNN model is trained which evaluates the local decisions of the local subnetworks and generates a final, global decision. With respect to the analogy to DDM, the DNN can be interpreted as a coarse problem and hence, the new approach can be interpreted as a two-level domain decomposition. In this paper, solely image classification problems using CNNs are considered. Experimental results for different 2D image classification problems are provided as well as a face recognition problem, and a classification problem for 3D computer tomography (CT) scans. The results show that the proposed approach can significantly accelerate the required training time compared to the global model and, additionally, can also help to improve the accuracy of the underlying classification problem.


翻译:深神经网络(DNNs),特别是神经神经网络(CNNNs)的深度神经网络(CNN-DNNs)在广泛的现代计算机应用问题中取得了显著进步。然而,由于大量数据集的可用性不断增加以及现代计算机的计算能力不断增加,使得DNN和CNN模式的复杂性和规模稳步增加,从而导致培训时间延长。因此,已经开发了各种方法和尝试来加速和平行复杂网络结构的培训。在此工作中,提出了一个新的CNN-DNNNT结构,它自然地支持一个模型平行培训战略,并且受到两级域域分解方法(DDM)的启发。首先,本地CNNNM模式,即子网络,其定义是运行输入数据中的重叠部分或非重叠,例如子图像。子网络可以完全平行地培训。每个子网络输出给机器学习问题的本地决定,它完全基于各自的输入数据。随后,另一个DNNNM模型被培训用来评估当地面图像的加速度, 其深度的深度的图像结果也可以被解读为两个域域域域网络和最终的图像。在解释, 将DM的图像上,可以解释为一种新的图像, 。在解释, 将它作为两个类中,可以被解释为一个新的的,可以解释到一个新的的,可以用来解释到一个新的文件,可以用来解释到一个新的的,可以解释到一个新的文件,可以用来解释到一个新的文件,可以解释到一个新的的。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员