Social media data such as Twitter messages ("tweets") pose a particular challenge to NLP systems because of their short, noisy, and colloquial nature. Tasks such as Named Entity Recognition (NER) and syntactic parsing require highly domain-matched training data for good performance. To date, there is no complete training corpus for both NER and syntactic analysis (e.g., part of speech tagging, dependency parsing) of tweets. While there are some publicly available annotated NLP datasets of tweets, they are only designed for individual tasks. In this study, we aim to create Tweebank-NER, an English NER corpus based on Tweebank V2 (TB2), train state-of-the-art (SOTA) Tweet NLP models on TB2, and release an NLP pipeline called Twitter-Stanza. We annotate named entities in TB2 using Amazon Mechanical Turk and measure the quality of our annotations. We train the Stanza pipeline on TB2 and compare with alternative NLP frameworks (e.g., FLAIR, spaCy) and transformer-based models. The Stanza tokenizer and lemmatizer achieve SOTA performance on TB2, while the Stanza NER tagger, part-of-speech (POS) tagger, and dependency parser achieve competitive performance against non-transformer models. The transformer-based models establish a strong baseline in Tweebank-NER and achieve the new SOTA performance in POS tagging and dependency parsing on TB2. We release the dataset and make both the Stanza pipeline and BERTweet-based models available "off-the-shelf" for use in future Tweet NLP research. Our source code, data, and pre-trained models are available at: \url{https://github.com/social-machines/TweebankNLP}.
翻译:社会媒体数据,如Twitter信息 (“ tweets” ) 给NLP系统带来了特殊的挑战。 诸如名为实体识别(NER)和合成分析等任务需要高域匹配的培训数据才能取得良好业绩。 到目前为止,没有关于NER和合成分析(例如,部分语音标记、依赖分解)的完整培训程序。 虽然有一些有附加说明的NLP的推文数据集,但这些数据集只是为个别任务设计的。 在这项研究中,我们的目标是在Tweebbank V2(TB2) 的基础上创建一个英国Nwebank-NER(NNER) 识别和合成分析系统认证系统(SOFLP), 在TTF2 上推出一个名为NLP的网络平台。 我们的TB2 使用亚马逊机械/ 测量我们的新说明的质量。 我们用TB2 将 Stanza的管道用于TB2, 与替代的NLPOP(NP) 模型进行对比, 在SOA- TIMS (eal-TA) IMS (eal- IMS) IMSA) 实现S- sal- deal- sal- sal- IM 和 Supal IM (eal) IM) IM) 的S (eal- deal- deal- IM) IM) IM) 的S) AS- deal- s (eb) 和 Sal- IM (eal- IM IM) 实现S) IM IM IM IM IM IM IM 的运行(eal- 的运行 和 IM IM 和 IMS (eal- sal- sal- sal- sal- deal-s (eal- sal- sal- sal- sal-s) IS (eal-s (eal- sal) IS) IS) IS) (eal- sal-s IS) (eal- sal-s (eal-s (eal-s)